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Abstract 

Background: Therapeutic cancer vaccination is an important side of immunotherapy. For the vaccines to achieve their treatment 

aim, they must overcome barriers erected by a restrained immune system. Objective: This simple review hopes to provide a 

foundation for the principles behind cancer vaccines. Methods: Several literatures search engines were employed to collect peer-

reviewed papers using the criteria outlined in the methods section. Main points: In addition to the well-established “preventative” 

cancer vaccines, there are now a few therapeutic vaccines for the “treatment” of certain malignancies. Moreover, hundreds of 

ongoing clinical trials eagerly await their results due to the relative infancy of the field. The continued advancements in cancer 

immunotherapy can bring fruitful results to some of the clinical work in progress. Conclusions: Therapeutic cancer vaccines are 

establishing themselves as another arm of immunotherapy in the fight against this complex disease. 

Keywords: Cancer vaccines, Cancer immunotherapies, Tumour antigens. 

 لقاحات السرطان: جانب آخر للعلاج المناعي
  الخلاصة

 المراجعة هذه تأمل :الهدف. المناعة جهاز يقيمها التي الحواجز على التغلب العلاج هذا على يجب المناعي، العلاج من مهم جانب هو السرطان ضد التطعيم الخلفية:

 المعايير باستعمال الخبراء راجعها التي البحوث لجمع الإلكترونية البرامج من العديد استخدام تم :الطرق. السرطان لقاحات وراء الكامنة للمبادئ أساس توفير في البسيطة

 لحداثة ونظرا   ذلك، على علاوة. الخبيثة الأورام لبعض العلاجية اللقاحات من قليل عدد الان هناك الوقائية، السرطان حاتلقا إلى بالإضافة :الرئيسية النقاط. بها المعترف

 يمكن للسرطان المناعي العلاج في المستمر التقدم ان. الصبر بفارغ نتائجها انتظار يتم والتي حاليا   الجارية السريرية التجارب من المئات هناك نسبيا ، الدراسي المجال هذا

 المرض هذا كافحةم في المناعي للعلاج آخر كذراع نفسها تثبت العلاجية السرطان لقاحات :الاستنتاجات. الجارية السريرية البحوث لبعض مثمرة نتائج إلى ؤديي ان
 .المعقد
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INTRODUCTION 

Employing vaccines to treat and/or prevent infectious 

diseases dates to well before Edward Jenner was 

accredited with using the vaccines to protect against 

smallpox [1]. Vaccination to prevent infections is now 

considered the most successful health measure of all 

time [2]. Over the years, vaccines have prevented 

countless illnesses and saved numerous lives [3]. 

Their widespread use has eradicated some diseases 

(e.g., smallpox) and drastically reduced the incidence 

of others (e.g., polio) [4]. However, vaccinations 

intended for therapy rather than disease prevention, 

such as for chronic infections and cancer, have proven 

challenging because the vaccine must overcome the 

barriers of a restrained immune system. Treatment 

vaccines aim to help the immune system recognize 

and react to threats manifested as antigens. Only a 

minority of patients with cancer generate sufficient 

immune responses to eradicate their malignancy [5]. 

Patients frequently develop an immune response to 

their cancer that is typically insufficient to get rid of 

the disease. The main reason for this low-key response 

is because, unlike pathogens, cancer cells closely 

resemble normal, healthy cells. This makes the 

immune system unaware of the existence of a threat 

requiring its attention. Moreover, cancer cells often 

develop ways to evade immune defenses or erect 

barriers to protect themselves against immune attacks. 

Acknowledging this, scientists devised a variety of 

methods to boost current immune responses and 

initiate fresh immune reactions against cancer, with 

cancer vaccines serving as one such advancement in 

immunotherapy. Cancer immunotherapies aim to 

activate the host antitumor immunity, modify the 

suppressive microenvironment around the tumor, and 

ultimately result in tumor shrinkage and increased 

patient survival. This led to the hypothesis that using 

cancer antigens in vaccines would, due to their 

preferential targeting of cancer cells, enable effective 
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cancer treatment and be capable of inducing long-

lasting immunity [2]. It took decades before the first 

cancer vaccine, based on a patient’s tumor cells, was 

developed and tested for the treatment of colorectal 

cancer [6]. This was followed in 2010 by the 

successful licensing by the USA’s Food and Drug 

Administration (FDA) of the Sipuleucel-T cell-based 

vaccine for the treatment of prostate cancer [7]. We 

must not overlook the other two prophylactic cancer 

vaccines that have already received approval: a) the 

human papillomavirus (HPV) vaccine, which prevents 

cervical cancer, and b) the hepatitis B virus vaccine, 

which prevents liver cancer [8]. The discovery of the 

first human melanoma-associated antigen and the 

advancement in sequencing technology have led to the 

emergence of new tumor antigens, propelling the field 

of cancer vaccines to the forefront of innovative 

cancer therapies [9,10]. 

METHODS 

For this narrative review, a literature search was 

carried out for peer-reviewed articles using PubMed, 

Google Scholar, ResearchGate and Web of Science, 

covering the period between February 2004 and 

February 2024. The keywords and key phrases 

employed in the search were “cancer vaccines, 

“therapeutic cancer vaccines, “cancer antigens,” and 

“cancer neoantigens." Chosen hits were selected and 

evaluated by the author, taking into consideration the 

citations of the article and the impact factor of the 

journal. Considering the wide scientific appeal of the 

field, many hits resulted from the initial search. 

However, studies deemed to be outside the scope of 

the basic narrative review intended for the present 

work were excluded. Publications before February 

2004 were only considered if the initial reading of the 

article suggested that they represent a significant or 

historic contribution to the field of cancer vaccines. 

Cancer Immunity Cycle 

The goal of successful cancer immunotherapy is to 

amplify and enhance the body’s delicately balanced 

immune response in a controlled manner, avoiding 

giving rise to unrestrained autoimmunity [11]. To do 

that, the therapy must target one or more steps in a 

cycle of individual processes, starting with the capture 

of cancer antigens by specialized cells generally 

known as antigen-presenting cells (APCs) and 

finishing with the killing of cancer cells and the 

resulting release of more antigens (refer to Figure 1).  

 
Figure 1: The cancer immunity cycle. 

This cycle is called the “cancer immunity cycle,” with 

each step possessing the potential to be rate-limiting 

in the overall generation of an optimal immune 

response to cancer [12]. Cancer antigens, produced 

and released by rogue cancer cells, are captured by 

antigen-presenting cells (APCs). The prime examples 

of APCs, particularly as far as cancer vaccination is 

concerned, are dendritic cells. In this review, we will 

continue to refer to dendritic cells as APCs. Following 

antigen uptake, protein-presenting machinery and 

costimulatory molecules of the APCs are upregulated 

[13]. Then, the APCs move to a lymph node and give 

T cells pieces (peptides) of the cancer antigens on 

HLA-1 or HLA-2 (human leukocyte antigen class I or 

II) complexes [14,15]. Major Histocompatibility 

Complexes (MHCs) are simply different general 

terms for the same proteins as HLAs, indicating their 

species independence. The presentation of cancer 

antigens, in the context of HLA complexes, to naive T 

cells will result in priming and activation of the T 

cells. Those T cells that are activated following the 

presentation of antigens in the context of HLA-I will 

be differentiated as cytotoxic T cells (Tc cells) and 

often referred to as CD8+ T cells. However, those T 

cells that are activated following the presentation of 

antigens in the context of HLA-II will be 

differentiated into helper T cells (Th) and are often 

referred to as CD4+ T cells. The cytotoxic T cells will 

then travel towards the tumor site to infiltrate the 

tumor tissue and induce killing through cytotoxicity 

and the production of effector cytokines (16,17]. The 

recognition of cancer cells takes place through the 

interactions of the T cell receptors (TCRs) and their 

cognate antigens bound to HLA-I, which are 

ubiquitously expressed on all nucleated cells, and with 

the help of an array of immune checkpoint receptors 

to initiate the killing of cancer cells, as depicted in 

Figure 2 [18].  

 
Figure 2: Recognition of cancer cells by cytotoxic CD8+ T 

cell involves a multitude of costimulatory signals some of 

which are depicted in this figure in addition to the binding 

of TCR with HLA-I displaying its cognate antigen. 

Cancer antigens released by lysed tumor cells can be 

captured again by APCs to induce polyclonal T cell 

responses, thus increasing the depth and breadth of the 

immune reaction [11,19-21]. The underperformance 

of the cancer immunity cycle can be attributed to three 

main reasons: a) unrecognized or undetected cancer 
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antigens; b) cancer antigens being treated as self rather 

than non-self, thereby eliciting regulatory T cell 

(Tregs) responses rather than effector T cell 

responses; and c) suppressive tumor 

microenvironment (TME) factors [22–24]. 

How do Cancer Vaccines Work? 

The crucial three players in eliciting a good immune 

response to cancer vaccines are tumor antigens, 

antigen-presenting cells and T cells. Tumor antigens 

are central to the efficacy of cancer vaccines [25]. An 

ideal tumor antigen should be highly immunogenic, 

explicitly expressed by the tumor, and necessary for 

the survival of its cells [26,27]. Tumor antigens can be 

subdivided into a) tumor-associated antigens (TAAs), 

which are also known as shared antigens and b) tumor-

specific antigens (TSAs), often referred to as 

neoantigens. Tumor-associated antigens include 

overexpressed antigens, differentiation antigens and 

cancer testicular antigens that are considered "self-

proteins." They also encompass cancer antigens of 

viral origin, which are considered “non-self-proteins" 

[17]. Human epidermal growth factor receptor 2 

(HER2) is a prominent example of overexpressed 

TAAs. Prostate-specific antigen (PSA) is an example 

of a differentiation antigen that is expressed by tumor 

cells as well as normal cells of the same tissue origin. 

These TAAs can be used with different patients and 

were the focus of the early cancer vaccines. However, 

the central immune tolerance of the thymus can 

recognize T cells carrying these “self-proteins” and 

eliminate them from the T cell repertoire, thus 

reducing the vaccine efficacy [28,29]. Subsequent 

clinical trials of cancer vaccines based on “self” TAAs 

had limited success in addition to the fact that the 

antigens they carry are also expressed in normal (non-

malignant) tissues, increasing the vaccine-induced 

toxicity [13,30]. Nonetheless, clinical experience with 

Prostvac, a PSA-targeted vaccine and Sipuleucel-T 

(Provenge), which targets a chimeric GM-CSF-

prostatic acid phosphatase (PAP) in prostate cancer, 

has shown that these TAA-based vaccines can 

generate an adequate antitumor response [31–34]. 

Tumor-specific antigens are a class of proteins 

specifically expressed in cancer cells and are often 

referred to as neoantigens [35]. This subgroup of 

cancer antigens has more potent immunogenicity, a 

stronger affinity for HLA binding and is unaffected by 

central immune tolerance [36,37]. Developments in 

next-generation sequencing technology and 

algorithms for binding prediction have greatly 

facilitated the discovery of new epitopes of this 

subgroup of cancer antigens [38, 39]. From a 

theoretical perspective, the higher the tumor 

mutational burden, the more nonsynonymous 

mutations and neoantigens will be available for HLA 

presentation [40]. An example of a cancer vaccine 

based on TSA is the mRNA neoantigen melanoma 

vaccine [38]. A neoantigen vaccine usually contains 

several antigens; for example, a personalized 

neoantigen DNA vaccine, named GNOS-PV02, 

encodes up to 40 antigens from hepatocellular 

carcinoma patients [41]. Cancer antigens of viral 

origin, which are “non-self-proteins” and are also a 

type of TSAs, can be highly immunogenic and have 

been successful in the prevention of certain virally 

induced cancers such as cervical cancer [26,42]. To 

expand the cancer antigen pool for vaccination, 

investigators have also combined neoantigens with 

shared antigens and combined vaccines with PD-1 and 

PD-L1 to increase antitumor activity [43–45]. 

Dendritic cells (DCs) represent the most important 

type of antigen-presenting cells [46–50]. Following 

the administration of the cancer vaccines and the 

uptake of antigens by dendritic cells, HLA-I, HLA-II 

and other co-stimulatory molecules on the surface of 

DCs will be upregulated [51]. Figures 3 and 4 

illustrate the cross-communication between antigen-

presenting cells and T cells and the steps involved in 

processing antigens [46–59]. To become fully 

activated, CD8+ cells require two signals. 

 
Figure 3: An illustration of the cross-communications 

between antigen-presenting cells and T cells leading up to 

the activation of the latter cells to eliminate cancer. 

The first signal (signal 1) is antigen-specific and is 

provided by the interaction of TCR with the peptide-

HLA-I complex and a second, antigen-non-specific 

signal (signal 2) is a co-stimulatory signal provided by 

co-stimulatory molecules present on the surface of 

dendritic cells and CD8+ cells. The co-stimulatory 

signal (signal 2) is necessary for the proliferation, 

differentiation and survival of CD8+ cells. Without 

signal 2, CD8+ cells may become unresponsive (a state 

called anergy), undergo apoptosis or develop immune 

tolerance [13]. The opposite of co-stimulation is when 

co-inhibitory molecules interact with different 

signaling pathways to arrest T cell activation. The 

most known inhibitory molecules are CTLA4 and 

PD1 and their increased expression is linked to a state 

of T cell exhaustion [60]. Fully activated CD8+ cells 

will then travel to the tumor site to exert their 

cytotoxic effects via ligation of their TCRs with 

antigens presented by HLA-I, assisted by several co-

stimulatory interactions as illustrated in Figure 2. The 

number of activated CD8+ cells in TME becomes a 

prognostic marker of cancer. These activated CD8+ 

cells detect tumor cells presenting target antigens and 

attack them through various mechanisms involving 

the release of cytotoxic granules such as perforin and 

granzymes, the induction of apoptosis and the 

production of other cytotoxic factors such as IFN-γ 

and TNF-α [61,62]. Vaccine components alone are 
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seldom sufficient to induce a strong enough immune 

response to eradicate cancer [36]. A variety of other 

components are usually included, such as checkpoint 

inhibitors and cytokines [63–65]. Combining cancer 

vaccines with traditional treatments such as radiation, 

immunotherapy, hormone therapy and chemotherapy 

may lead to synergistic beneficial outcomes [36]. 

 
Figure 4: A simplified representation of the events 

following the uptake of proteins/viruses by antigen-

presenting cells and leading up to the presentation of their 

fragments to T cells. 

Resistance to Cancer Vaccines 

Cancer vaccines must overcome several barriers 

before they can elicit immune protection against 

malignancies. These barriers could be put into two 

groups: a) tumor cell-driven (intrinsic) barriers and b) 

microenvironment-driven (extrinsic) barriers. 

Tumour cell-driven barriers 

These intrinsic barriers can include the following [13]: 

1) Downregulation of cancer antigen expression, 

which may be a result of copy number loss at the 

genomic or epigenomic levels. Antigen loss could also 

be mediated by immune selection resulting from 

differences in immunogenicity among tumor cells, 

with the elimination of those exhibiting strong 

immunogenicity owing to an effective antitumor 

response [66]. 2) Downregulation of the expression of 

HLA-I molecules. These molecules are expressed by 

cancer cells (and almost all human nucleated cells) 

and their downregulation in cancer is often a strategy 

employed in the progression of malignancy [67–70]. 

The lack of costimulatory molecules in cancer cells, 

which leads to failure of T cell activation and T cell 

tolerance, also represents a reason for tumor immune 

escape [13,66]. 3) Altered antigen processing within 

the cancer could also lead to poor tumor cell 

recognition by CD8+ T cells [71]. 4) Mutations in 

signaling pathways supporting tumor immune control 

could also lead to the immune system's failure to 

recognize cancer. The signaling pathway WNT/β-

catenin was linked to cancers that lack immune cell 

infiltration and are less likely to respond to immune 

checkpoint blockade [72,73]. 

Microenvironment-driven barriers 

These extrinsic factors are primarily caused by the 

various immunosuppressive cells in TME, which can 

interfere with the activation and proliferation of T 

cells through the upregulation of immunosuppressive 

proteins and the inhibition of the function of dendritic 

cells [74,75]. The presence of immunosuppressive 

cells creates an inhibitory niche within TME that 

protects the tumor from immune attack. These 

immunosuppressive cells include: 1) Myeloid-derived 

suppressor cells (MDSCs), which are neutrophils and 

monocytes that follow a slightly different pathological 

activation route to become immunosuppressive [76]. 

The MDSCs are the cornerstone barriers protecting 

tumors from the onslaught of the immune system [77]. 

2) Tumor-associated macrophages (TAMs) come in 

two main types: a) the antitumor M1 or b) the 

protumor M2 [78]. These macrophages are polarized 

into the M2 phenotype by cytokines such as IL4, IL10 

and TGF-β released from T helper type 2 cells (Th2). 

Tumor-associated macrophages of the M2 type 

support tumor viability by promoting angiogenesis 

and TME remodeling [79]. 3) Cancer-associated 

fibroblasts (CAFs) prevent the migration and 

proliferation of DCs and T cells by remodeling the 

extracellular matrix through the construction of dense 

fibrous structures and the recruitment of MDSCs [80]. 

4) T regulatory (Treg) cells, which inhibit the 

proliferation and activation of effector T cells. 5) 

Dendritic cells that are PD-L1-positive can suppress T 

cell function by presenting this inhibitory ligand to 

them. Strategies to counteract the suppressive effects 

of TME might lead to improvements in the efficacy of 

cancer vaccines. 

Platforms of Cancer Vaccines 

There are four major platforms for the construction of 

cancer vaccines: 1) cell-based platforms; 2) peptide-

based platforms; 3) viral-based platforms; and 4) 

nucleic acid-based platforms (see Table 1) [5,13,81]. 

A paramount feature of the success of any of these 

constructs is the efficient presentation of cancer 

antigens to T cells [53,82]. We discuss below the 

essential characteristics of each of these platforms and 

the role of their common denominator of success, 

which is their action through dendritic cells. 

Cell-based cancer vaccines 

These vaccines were the types that were initially 

employed despite being expensive to prepare and 

cumbersome to manufacture. They are usually 

prepared from whole cells or fragments of cells for a 

broader immune response. This category of cancer 

vaccines includes: a) cancer cell-based vaccines; b) 

dendritic cell-based vaccines; c) APC-based vaccines; 

d) bacteria-based vaccines; and e) yeast-based 

vaccines (see Table 1). Cancer cell-based vaccines 

usually include all the tumor-associated antigens 

encompassing the epitopes of CD4+ cells and CD8+ T 

cells [82]. Under normal circumstances, a cancer cell 

exhibits poor immunogenicity as it secretes soluble 

factors that could suppress the immune response [83]. 
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For this reason, additional modifications are often 

needed to enhance tumor cell immunogenicity when 

included in a cancer vaccine platform. The use of 

tumor cell vaccines is usually accompanied by 

immune stimulants such as granulocyte macrophage 

colony stimulating factor (GM-CSF).  

Table 1:  Cancer vaccine platforms in approved products and in products being developed. 

Platform Representative antigen examples Target cancer References 

Cell-based    

- Cancer cell Cells/GM-CSF Pancreatic cancer [86,102] 

- Dendritic cell Cells/GAA Glioma [96] 

- APC Cells/PAP Prostate cancer [98] 

- Bacteria Mesothelin Mesothelioma [100] 
- Yeast CEA Carcinomas [101] 

Peptide-based     

- Peptide  HER2 BC [103] 

- Protein  MAGE-3 Melanoma [103,104] 

- Antibody Racotumomab NSCLC [105,106] 

Viral-based Poxviruses/PSA Prostate cancer [31] 

Nucleic acid-based     

- DNA PAP Prostate cancer [107] 

- RNA Multineoantigens Pancreatic cancer [108] 

APC: antigen-presenting cell; DNA: deoxyribonucleic acid; RNA: ribonucleic acid; HER2: human epidermal growth factor 

receptor 2; MAGE-3: melanoma-associated antigen 3; CEA: carcinoembryonic antigen; GM-CSF: granulocyte-macrophage 

colony-stimulating factor; GAA: glioma-associated antigen; PAP: prostatic acid phosphatase; PSA: prostate-specific antigen; BC: 
breast cancer; NSCLC: non-small cell lung cancer.

Autologous cancer cell vaccines have the advantage 

of presenting the patient with a unique set of antigens 

[84]. In one cancer cell-based vaccine, DCs and 

autologous cancer cells were fused to produce the 

finished product, thus combining the unique and 

desired characteristics of these two types of cells [85]. 

The logistical drawback of using autologous cancer 

cells has driven the development of allogenic cancer 

cell vaccines, which typically contain 2-3 tumor cell 

lines of a given neoplasia. The vaccine known as 

GVAX is one example that contains allogenic 

pancreatic, prostate or breast tumor cells [86–88]. The 

inclusion of interleukin-7 (IL-7) and interleukin-21 

(IL-21) could synergistically strengthen the immune 

response against a cancer cell-based vaccine. Also, 

combining such vaccines with immune checkpoint 

inhibitors is quite commonly used [89,90]. In 

dendritic cell-based cancer vaccines, the constructs 

can exploit the presence of DCs in vivo in a non-

targeted way or by coupling the antigen to antibodies 

specific to DC surface receptors [91–93]. 

Alternatively, the DCs are loaded ex vivo with the 

required cancer antigens before administration [53]. 

Given the importance of DCs for the initiation of 

CD4+ and CD8+ T cell responses, the design of 

dendritic cell-based vaccines must aim at achieving 

concentrated antigen delivery to DCs to drive their 

activation [94]. Dendritic cell activation will, in turn, 

drive both CD4+ cells and CD8+ T cells to be 

stimulated. CD4+ cells are needed for optimal and 

sustained effector CD8+ T cell responses as well as the 

induction and maintenance of CD8+ T cell memory 

[55,57,58]. In addition to CD8+ T cell supporting 

roles, CD4+ T cells have intrinsic effector functions of 

their own [95]. Okada et al. used DCs loaded with 

synthetic peptides from glioma-associated antigen 

(GAA) and their data supported the immunogenicity 

and clinical activity of the vaccine [96]. Morse et al. 

employed a vaccine containing DCs mixed with 

poxviruses encoding cardioembryonic antigen (CEA) 

and Mucin1 (MUC1) as the cancer antigens to obtain 

antigen-specific T cell responses in colorectal cancer 

[97]. Cancer vaccines based on antigen-presenting 

cells (APCs) are usually made from blood following 

leukapheresis to separate and collect the required type 

of APCs. An approved candidate for this platform of 

vaccines is Sipuleucel-T, which consists of CD54+ 

cells (APCs exhibiting the CD54+ surface marker) that 

have been incubated with the PAP (prostate acid 

phosphatase)/GM-CSF (granulocyte-macrophage 

colony-stimulating factor) fusion construct as the 

cancer antigen for the treatment of prostate cancer 

[98]. An example of a bacteria-based cancer vaccine 

is the recombinant Listeria monocytogenes vaccine 

that expresses mesothelin to elicit specific T-cell 

responses against this antigen for the treatment of 

mesothelioma [99]. This bacterium is actively taken 

by APCs through phagocytosis and thus represents an 

ideal vector for the delivery of antigens [100]. 

Mesothelin is a cell-surface protein that is 

overexpressed in mesothelioma as well as ovarian 

cancer and functions as an adhesion protein. One 

bacteria-based cancer product does not even deliver 

defined tumor antigens to generate an antitumor 

response for example, the intravesical administration 

of the mycobacterium bacillus Calmette-Guerin (in 

the BCG vaccine), which is approved for the treatment 

of certain types of bladder cancer [5]. The brewer’s 

yeast Saccharomyces cerevisiae is stable, non-

pathogenic, easily engineered, propagated and 

purified to become a further addition to the arsenal of 

cancer vaccine platforms. Recombinant yeasts have 

been shown to activate DCs to present antigens on 

both classes of HLA molecules [101]. 

Peptide-based cancer vaccines 

This category of cancer vaccines comprises three 

subclasses: a) short peptide-based vaccines; b) 

protein-based vaccines; and c) antibody-based 

vaccines. They are relatively easy to manufacture but 

require the inclusion of potent immune adjuvants 
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and/or immunomodulators to boost their 

immunogenicity, which would otherwise be weak and 

might lead to immune tolerance [5,13,82]. The early 

vaccines in this category used short peptides of less 

than 15 amino acids in length with minimal epitopes 

needed to target CD8+ T cells but not CD4+ cells, 

although for effective cancer vaccines both types of 

cells are needed to maintain cytotoxic T cell function 

[2,109]. The length of the peptide in these cancer 

vaccines dictates their performance. Short peptides do 

not require processing by APCs or other nucleated 

cells and can be directly loaded onto HLA-I 

molecules, in contrast to long peptides, which must be 

processed by APCs first before loading [110]. Parts of 

long peptides and proteins are degraded by the 

endosomal pathway and loaded on HLA-II molecules 

before being recognized by CD4+ cells, while the 

other parts enter the cytoplasmic pathway, are 

processed by the proteasome and then presented by 

HLA-I to CD8+ T cells [111]. Short peptides are 

usually produced by chemical synthesis, while long 

peptides are frequently made by protein expression 

systems such as mammalian cells, which closely 

resemble the natural tumor antigens. The 

immunogenicity of small antigens can be further 

enhanced by fusing with carrier proteins such as the 

heat shock protein [13]. Sipuleucel-T (Provenge) is a 

licensed product for the treatment of prostate cancer 

that is made up of a peptide/protein construct 

(PEP/GM-CSF) as the antigen presented by APCs, 

which are collected from the individual patient. 

Antibody-based cancer vaccines are those that are 

directed against specific antibodies but act as antigens, 

found on the surface of B-lymphoma cells [105,106]. 

They have the advantage of targeting a unique tumor-

specific antigen but to date, they suffer from the 

drawbacks of being labor-intensive to produce and 

having to be patient-specific. The antibody 

racotumomab for the treatment of NSCLC is a prime 

example of this category of cancer vaccines. 

Viral-based cancer vaccines 

Viruses are naturally immunogenic and can make the 

innate and adaptive arms of the immune system work 

together to achieve a long-lasting response to cancer 

[13]. The virus’s genetic components can be 

engineered to have sequences encoding tumor 

antigens of interest. They can be divided into three 

forms. 1) inactivated viruses; 2) attenuated viruses; 

and 3) viral subunits. The most common human 

cancer-related viruses are Epstein-Barr virus, HCV, 

HBV and HPV, with the latter two types of viruses 

being used in vaccines for the prevention of liver and 

cervical cancers, respectively [112]. These 

preventative cancer vaccines can be very effective in 

reducing the risk of viral infections, which are often 

the root cause of certain malignancies. Cervarix, 

Gardasil and Hepatitis B vaccines have been produced 

and marketed to guard against cancer as well as to 

prevent infections caused by viruses [113]. Cervarix 

prevents infections with types 16 and 18 HPV, while 

Gardasil is licensed for infections caused by types 

6,11,16 and 18 HPV. A further version of Gardasil 

called Gardasil 9 is based on even more types of HPV, 

namely 6,11,16,18, 31, 33, 45, 52, and 58. For 

therapeutic cancer vaccines, the most evaluated viral 

vectors are the poxviruses, which can accept large 

inserts of foreign DNA, and their expression inside 

cells allows for the processing of any antigens they 

carry [114]. Replication and transcription of 

poxviruses are restricted to the cytoplasm of the cell, 

reducing the risk of insertional mutagenesis in the 

host. However, as with other viruses, their 

neutralization by the host immune response limits 

their use unless genetically engineered to overcome 

this problem [115–117]. Several clinical trials have 

been conducted on two therapeutic viral-based 

vaccine platforms named PROSTVAC (expressing 

PSA) and PANVAC (expressing CEA and MUC-1) 

with encouraging initial results [118]. The use of 

oncolytic viruses represents another strategy to deliver 

viruses intratumorally to treat cancer. These viruses 

can be modified to express GM-CSF to attract DCs 

and lymphocytes to the lysed tumor site [119]. T-VEC 

(talimogene laherparepvec) is an oncolytic herpes 

virus engineered to produce GM-CSF for enhanced 

immunogenicity and approved by the FDA and EMA 

in 2015 for the treatment of melanoma [36,120]. The 

mechanism of action of oncolytic virus vaccines is the 

in-situ killing of cancer cells and the release of 

antigens to prime and amplify the host antitumor 

response [121]. Other oncolytic viruses include 

adenovirus, measles virus, vaccinia virus and reovirus 

[122]. Various strategies are commonly used to 

optimize the effects of viral-based cancer vaccines, 

including the inclusion of PD-1 inhibitors and the 

engineering of immune molecule expression to disrupt 

the TME [13]. Other means that have been 

investigated to enhance the effects of viral vaccines 

for cancer include the use of chemotherapy, 

radiotherapy and adoptive T cell therapy. 

Heterogeneous viral vectors have also been employed 

to enhance the immune response, as in the case of 

PROSTVAC-V/F, which employs PSA-encoded 

vaccinia virus as the primary immunization agent and 

PSA avian poxvirus encoded for the follow-on booster 

effect [123]. 

Nucleic acid-based cancer vaccines 

These vaccines can either be DNA-based or mRNA-

based, which can simultaneously deliver multiple 

antigens, allowing the APCs to present various 

epitopes of several antigens. Nucleic acid-based 

vaccines can be simple, rapid and suitable for the 

development of personalized cancer therapies [13]. 

Compared to mRNA vaccines, DNA-based cancer 

vaccines exhibit superior stability, and early vaccines 

were of this type. A single DNA molecule, once it 

enters the nucleus of a cell, can produce multiple 

copies of mRNA molecules. However, the DNA has 

the potential to give rise to insertional mutagenesis 

[124]. DNA-based cancer vaccines can produce their 

action in one of several ways. The DNA molecule, 

once delivered in a suitable format, can go either 

directly to a somatic cell to be translated into antigens, 

which will be presented by HLA-I to CD8+ T cells or 

the antigens released by that cell, through secretion or 

apoptosis, can be picked up by APCs to be presented 
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to T cells. Alternatively, the DNA molecules could be 

directly transfected into APCs and then the 

endogenous antigens, following their transcription 

and translation, are processed and presented to T cells 

[125]. Adjuvants are often used to boost the 

immunogenicity of DNA-based cancer vaccines. 

McNeel et al. found that a DNA vaccine encoding 

PAP can elicit an antigen-specific immune response 

in patients with prostate cancer [126]. Also, PTVC-

HP (NCT03600350), an experimental DNA vaccine, 

uses plasmid DNA that codes for human PAP along 

with Nivolumab to treat people with prostate cancer. 

The COVID-19 pandemic has increased the 

prominence of mRNA-based cancer vaccines, which 

represent a new and promising platform. Here, 

exogenous synthetic mRNAs are introduced into cells 

to provide the cells with templates for making 

antigens [127,128]. The mRNA-based vaccines are 

conveniently divided into three types. 1) conventional 

(non-replicating) mRNA vaccines; 2) self-amplifying 

mRNA vaccines (SAMs); and 3) trans-amplifying 

mRNA vaccines (TAMs). There is a cap (7-

methylguanisine 5 cap), 5ˊ-UTR (5ˊ-untranslated 

region), ORF (open reading frame), 3ˊ-UTR (3ˊ-

untranslated region), and 3ˊpoly(A) tail in a normal 

mRNA vaccine. Unlike conventional mRNA 

vaccines, there are two ORFs in SAMs, one encoding 

the cancer antigen of interest and the other encoding a 

viral replication component, enabling long-lasting 

mRNA amplification to allow the production of large 

amounts of antigens from low doses of vaccines 

[128,129]. The trans-amplifying mRNA vaccines use 

two different transcripts to achieve a similar effect to 

SAM. Making an mRNA vaccine can be simple, fast 

and safe, as the molecules do not tend to integrate into 

the host genome. However, the limited stability is one 

of its drawbacks, despite the fact that lipid 

nanotechnology and other delivery methods have 

greatly improved mRNA stability and translation 

efficiency [130–132]. To treat people with pancreatic 

ductal adenocarcinomas [108], Rojas et al. created a 

personalized mRNA vaccine called "autogene 

cevumeran" that had a mix of antigens (at least 20 for 

each patient). The authors found that the vaccine 

induced substantial T cell activity that may correlate 

with delayed pancreatic cancer recurrence. 

Clinical Status of Cancer Vaccines 

Apart from the “preventative” cancer vaccines 

mentioned earlier, there have been a total of 10 

commercially approved “treatment” cancer vaccines 

in the world and these are listed in Table 2 [133,134].  

Table 2:  Approved vaccines for the treatment of cancer in various countries 
Product Country of license Cancer type(s) Notes 

Sipuleucel-T (Provenge) USA Prostate cancer Autologous APCs containing 

PAP/GM-CSF fusion protein 

Intravesical BCG 

(TheraCys) 

USA Urethelial carcinoma Following supply shortages, a 

competing strain of BCG 

vaccine is available under the 
name TICE. 

Talimogene laherparepvec 
(T-VEC Imlygic) 

USA Melanoma Oncolytic genetically modified 
herpes simplex virus 

Nadofaragene firadonevec  
(Adstiladrin) 

USA Bladder cancer A non-replicating adenovirus 
containing INF-α2b 

mRNA-4157/V940 USA Melanoma A single synthetic mRNA 
coding for up to 34 neoantigens 

and given with Pembrolizumab 

Hybricell Brazil  Kidney cancer and melanoma Autologous monocytes treated 

with cytokines and converted to 

DCs and fused with patient’s 
cancer cells 

CreaVaxRCC South Korea Renal carcinoma Autologous DCs treated with 
tumour extracts and cytokines 

Apceden  India NSCLC, CRC, ovarian and 
prostate cancers 

Personalised DC-based vaccine 

OncoPhage Russia Renal cell carcinoma Autologous heat shock protein 
vaccine 

M-Vax Switzerland Melanoma Autologous cancer cells mixed 

with BCG 

DCVax-L Switzerland Glioblastoma Autologous DCs and tumour 

cells mix 

CimaVax-EGF Cuba, Peru, Paraguay, Colombia 
and Bosnia 

NSCLC A recombinant EGF conjugated 
to a protein carrier 

BioVaxID Compassionate use in various 
countries 

B-cell lymphoma Clonal immunoglobulin idiotype 

APCs: antigen-presenting cells; PAP: prostatic acid phosphatase; GM-CSF: granulocyte-macrophage colony-stimulating factor; 

BCG: Bacillus Calmette-Guerin; DCs: dendritic cells; NSCLC: non-small cell lung cancer; CRC: colorectal cancer; EGF: 
epidermal growth factor.
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Furthermore, the US regulators (the FDA) have 

granted a breakthrough therapy designation for an 

mRNA vaccine manufactured by the pharmaceutical 

company MSD under the developmental name 

mRNA-4157/V940 for the treatment of melanoma in 

2023. Clinical assessment of some of these global 

vaccines has been generally disappointing and, in 

some cases, incomplete, with reasons being attributed 

to TME immunosuppression, insufficient T cell 

response and choice of cancer antigens, among others 

[134,135]. Up to July 2022, there have been 360 

clinical trials using cancer vaccines for treatment with 

377 interventions (a few of the trials had more than 

one intervention) [134]. The highest number of 

clinical trials were using cell-based cancer vaccines 

(37.7%), followed closely by those using peptide-

based vaccines (32.6%) (see Figure 5).  

 
Figure 5: The contribution of different types of cancer 

vaccines to the total number of ongoing clinical trials. 

Viral-based cancer vaccines made up 10.9% of the 

total number of trials. The remaining 5.8% of the 

clinical trials represented vaccines that could not be 

assigned to one of the other four categories due to the 

nature of the methodology employed. It appears that, 

although some of the cancer vaccines that have been 

approved globally for the treatment of malignancies 

have yet to show their potential, there is a great deal 

of interest and effort in improving and developing this 

therapy. 

Conclusions and Prospects 

The high number of clinical trials being conducted to 

test the safety and efficacy of cancer vaccines is a 

testimony to the continued interest in this arm of 

immunotherapy. This field has come a long way from 

the early empirical observations of the value of 

vaccination to a complicated scientific discipline 

reflecting advancements in immunology. In addition 

to well-established cancer “prevention” vaccines, 

there are now a few approved cancer vaccines for the 

“treatment`’ of several types of malignancies, as well 

as hundreds of clinical trials. Future cancer vaccines 

might employ combinations of vaccine components 

and other forms of cancer therapies, such as immune 

checkpoint inhibitors, chemotherapy and 

radiotherapy, to further boost the immune response. 

Further developments in the identification and 

validation of cancer neoantigens can yield new targets 

for improved T cell responses. The question of what 

constitutes a potent antitumor response can be 

addressed by investigating the differences between the 

blood-immune response and the response to the 

disease as observed in the clinic. This could lead to a 

better design of clinical trials, such as targeting the 

cancer antigens to a specific subset of dendritic cells 

to obtain highly potent T cells. 
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