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 Abstract 

Type 2 diabetes mellitus (T2DM) is becoming more prevalent at an alarming rate. With a better understanding of its pathophysiology, 

new treatment alternatives directed to different critical targets in T2DM have been created and studied. The development of novel 

therapeutics using various methods, such as novel medication combinations, changed drug molecules, and enhanced delivery 

systems, can eliminate some of the side effects of old drugs while also improving their efficacy. Newer pharmacological targets such 

as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are effective through different 

processes. They can be used to treat T2DM of various types and etiologies. Other medicines, such as end barrier, gene therapy, and 

stem cell technology, employ advanced ways to treat T2DM, and their promise remains untapped. Molecular targets in T2DM are 

also extensively evaluated because of their capacity to target problems at the molecular level. Antibody treatments and 

immunizations against T2DM are also investigated in this area. However, there are few current clinical studies, and development 

progress is modest. There are numerous medicines available to treat T2DM, each with its own set of benefits and drawbacks. The 

treatment plan that the patient prefers is usually determined by the patient's health and the treatment aim. Many aspects should be 

considered before choosing an ideal treatment option. Patient compliance, therapeutic efficacy and potency, bioavailability, and 

other pharmacological and nonpharmacological features are only a few examples. 
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 أهداف جديدة للعلاج الدوائي للنوع الثاني من مرض السكري 

 الخلاصة 

ودراسة بدائل علاجية جديدة موجهة إلى أهداف  قتراحأصبح أكثر انتشارا بمعدل ينذر بالخطر. مع فهم أفضل للفيزيولوجيا المرضية، تم إ الثاني مرض السكري من النوع

بعض  وأمكانية تجنبظمة التسليم، حرجة مختلفة في تطوير علاجات جديدة باستخدام أساليب مختلفة، مثل تركيبات الأدوية الجديدة، والجزيئات الدوائية المتغيرة، وتعزيز أن

من  ثبتت فاعليتهاز البروتين المنشط، السيرتوين، وغيرها يينا، كب زيينابروتين كالمثل  حديثة علاجيةأهداف كار تم ابت الآثار الجانبية للأدوية القديمة مع تحسين فعاليتها.

 ائقكطر. تستخدم أدوية أخرى، مثل حاجز النهاية والعلاج الجيني وتكنولوجيا الخلايا الجذعية النوع الثاني من داء السكريخلال عمليات مختلفة. ويمكن استخدامها لعلاج 

 على نطاق واسع بسبب قدرتها على استهداف المشاكل على المستوى الجزيئي. المرضغير مستغل. كما يتم تقييم الأهداف الجزيئية في  معضمهالعلاج، ولا يزال لمتقدمة 

رية الحالية. عادة ما يتم تحديد خطة العلاج التي يفضلها . ومع ذلك ، هناك عدد قليل من الدراسات السريالمرضالأجسام المضادة والتحصين ضد  استخدامكما يتم التحقيق في 

العلاجية، والتوافر البيولوجي، المريض من خلال صحة المريض وهدف العلاج. وينبغي النظر في العديد من الجوانب قبل اختيار العلاج المثالي. امتثال المريض، والفعالية 

 وى أمثلة قليلة.وغيرها من الميزات الدوائية وغير الدوائية ليست س
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INTRODUCTION 

Diabetes mellitus is a global public health issue that 

contributes significantly to morbidity and mortality [1]. The 

disease's name is derived from a Greek term that means 

"passing through" and a Latin word that means "honey" or 

"sweet" [2]. It is distinguished by the discharge of a high urine 

volume with a honey-like flavor [3]. Diabetes mellitus is a 

systemic disease that is both complex and chronic. 

Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia 

are examples of metabolic disorders. Diabetes mellitus can 

damage many organs (e.g., heart, blood vessels, kidney, 

neurons, and eye) and lead to various life-threatening 

consequences or even death if not addressed [4]. Diabetes 

mellitus (DM) is becoming more common all over the world. 

In 2015, it has been estimated that 246 million individuals 

globally have DM, with around 80% of them living in 

developing nations [5]. According to the World Health 

Organization (WHO), over 1.1 million people died of diabetic 

complications in 2010, with the death rate anticipated to rise 

to 50% by 2030 [6]. Increased urbanization, aging, changed 

lifestyle patterns (lack of exercise and awareness, smoking), 

and obesity are linked to an increased prevalence of DM in 

emerging and developed countries [7]. Type 1 diabetes 

mellitus (T1DM) (insulin-dependent) and type 2 diabetes 

mellitus (T2DM) (insulin-independent) are the two 

predominant kinds of DM, with T2DM accounting for 

roughly 95% of patients [8]. T1DM is defined by absolute 

insulin shortage and pancreatic cell death [9], whereas T2DM 

is characterized by insulin resistance (IR) and is occasionally 

accompanied by insulin secretion abnormalities [10]. DM is 

characterized by many common signs and symptoms. 

Polyuria, polyphagia, polydipsia (increased thirst), and 

weight loss are all symptoms of extensive protein oxidation 

and glycation. Gestational DM [11] is another mild kind of 

DM. Insulin mimickers, insulin secretagogues, insulin 

sensitizers, and carbohydrate absorption blockers are the 

medications utilized to treat T2DM on a mechanistic basis 

[12]. Previously, treatment options for T2DM included 

lifestyle changes, metformin, sulphonylureas, and insulin. 

Nowadays, there are many different types of antidiabetic 

drugs. This method of treatment appears to be reasonable. 

T2DM is associated with two outcomes: insulin resistance, 

which is indicated by increased hepatic glucose synthesis and 

impaired glucose utilization from tissues, particularly 

muscles, and decreased insulin secretion from β-cells [13]. 

Many details about the role of β-cells, incorrect glucagon 

secretion, and incretins in the pathogenesis of T2DM are now 

known. Other problems, such as increased glucose 

reabsorption from the kidneys and neurotransmitter 

dysfunction [14], immune system 

dysregulation/inflammation, increased rate of glucose 

absorption from the digestive tract, and aberrant microbiota 

[15], are also gaining attention. There are also new medication 

classifications introduced. Although there are several 

antidiabetic medications available in the market, the majority 

of them are associated with side effects. Off-target effects, 

contraindications, sustainability, safety, and tolerance are all 

linked to them [16]. The incremental modification of current 

therapeutic classes, such as antidiabetic medicines, has 

yielded promising results [16]. It can be done with new 

combinations of medications or pharmaceuticals with altered 

structures. Gene therapy and molecular technologies are 

examples of novel non-drug therapies. Even more 

remarkable, the use of nanotechnology in T2DM ensures that 

medications are delivered to their intended targets [17]. This 

review article aims to provide a comprehensive assessment of 

the newly found biological targets for antidiabetic drugs used 

to treat T2DM, as well as the molecular mechanisms involved 

in their actions. This paper will also provide an overview of 

novel and traditional techniques for T2DM management. 

NOVEL DRUG TARGETS (Oral Agents) FOR T2DM 

TREATMENT 

Protein Kinase B (Akt/PKB) Modulation  

Glucose transport into skeletal muscle is regulated by two 

different, but interconnected mechanisms. The insulin-

dependent Akt/PKB pathway and the contraction-stimulated 

adenosine 5′-monophosphate (AMP)-activated protein kinase 

(AMPK)-dependent pathway are two among them [18]. There 

are just a few new medications that target the Akt/PKB 

pathway. IP7, a result of IP6K1-induced phosphorylation, 

inhibits the Akt/PKB pathway in muscles, suggesting that 

blocking IP6K1 could activate the Akt/PKB pathway for anti-

diabetic benefits [19]. N2-(m-(trifluoromethyl) benzyl) N6-

(p-nitrobenzyl) purine (TNP), on the other hand, inhibits 

insulin release in pancreatic cells via reducing IP6Ks, 

implying an opposite role in different organs [20]. Newly 

developed agents such as N, N-dimethyl phenylenediamine 

(DMPD)-derivatized nitrilotriacetic acid vanadyl complexes 

and zinc allixin-complexes are at the preclinical stage. They 

targeted the Akt/PKB pathway and have shown anti-diabetic 

properties [21]. Targeting the Akt/PKB pathway has been 

shown to have anti-diabetic benefits in several natural 

products [22]. 

Activation of 5' Adenosine Monophosphate-Activated 

Protein Kinase (AMPK) 

Because of its energy sensing ability, AMPK is essential for 

maintaining metabolic homeostasis, and its absence is linked 

to insulin resistance [23]. Activating the AMPK system in the 

liver inhibits gluconeogenesis and lipogenesis by 

downregulating certain genes [24]. Meanwhile, AMPK 

activation enhances glucose uptake, mitochondrial genes, 

lipid oxidation, and sirtuin 1 (SIRT1) activity in muscles [22]. 

Most antidiabetic medicines, including the well-known 

metformin, are indirectly implicated in AMPK activation 

[25]. The activation of AMPK has been linked to AS160, 

SREBP, and other proteins involved in the pathogenesis of 

T2DM [26]. MK-8722, a powerful AMPK activator, has 

recently been found to improve glucose homeostasis while 

also causing ventricular hypertrophy [27]. In comparison to 

A769662 and AICAR.47, Merck's product, ex229, has shown 

greater AMPK activation in skeletal muscle, which enhances 

glucose uptake and fatty acid oxidation [28]. Furthermore, 

Pfizer's lead chemical, PF-06409577, has been described as a 

possible agent to protect against diabetic nephropathy and has 
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entered Phase 1; however, the underlying mechanism has yet 

to be elucidated [29]. 

Activation of SIRT1 Gene Isoforms 

The sirtuin-1 (SIRT1) gene is the founding member of the 

mammalian sirtuin family. In diabetic mice, SIRT1 activity 

has been shown to lower the incidence of DM, β-cell damage, 

atherosclerosis, bone marrow, and autonomic neuropathy 

[30]. SIRT1 expression is inversely linked with advanced 

glycation end-products (AGEs) in T2DM, implying that 

SIRT1 plays a role in diabetic nephropathy prevention [31]. 

Calorie restriction enhances glucose homeostasis and insulin 

sensitivity via upregulating class 3 NAD+-dependent histone 

deacetylase. In both in vitro and in vivo tests, Sirtris 

Pharmaceuticals' main compounds SRT1460, SRT1720, and 

SRT2183 appeared to be significantly more effective than 

resveratrol, another recognized SIRT1 activator [33]. 

Meanwhile, only a few data have looked at the role of SIRT2 

as a metabolic target [34]. While it has been reported that 

inhibiting SIRT1 and SIRT3 has adverse effects on insulin 

signaling and sensitivity, a different study found that 

downregulating SIRT2 has the opposite impact on skeletal 

muscles [35]. SIRT2 expression is reduced in diabetic 

neuropathy and is required for axon regeneration, according 

to another study [36]. SIRT2 has also been linked to Akt/PKB 

activation; it increases insulin sensitivity and cures AGE-

induced diabetic cardiomyopathy in multiple cells [37]. 

Overall, the vast majority of research found that upregulating 

SIRT2 has a favorable effect on T2DM. Downregulation of 

this gene, on the other hand, maybe helpful in other tissues. 

G Protein-Coupled Receptors (GPCRs) 

Insulin resistance is insufficient to develop T2DM since 

pancreatic β-cells can regulate blood glucose levels through 

compensatory hyperinsulinemia [38]. The majority of 

mediators that promote or inhibit glucose-stimulated insulin 

secretion (GSIS) worked through G protein-coupled receptors 

(GPCRs) [39]. Gs, Gi, Gq, and G12 are the four major types of 

G-proteins known to be involved in the signaling pathways 

that affect insulin production [40]. The intracellular second 

messenger cAMP is modulated by Gs and Gi, whereas Gq 

works through the IP3 pathway. Gs and Gq increase insulin 

secretion, whereas Gi has the reverse effect [41]. Meanwhile, 

the function of G12 in β-cells remains a mystery. 

Activation of GPR119 Receptor 

GPR119 is primarily located in the pancreas and 

gastrointestinal tract of an adult human [42]. It is an orphan 

GPCR of class A (rhodopsin-type) that controls insulin and 

incretin production [43]. It raises intracellular cAMP 

concentration after activation, triggering GSIS in β-cells and 

releasing gut peptides as GLP1 and GIP [44]. Ex vivo testing 

of GPR119 activity on insulin secretion revealed that a 

GPR119 agonist, AR231453, significantly boosted insulin 

release [45]. Apart from insulin secretion, GPR119 agonist-

induced incretin secretion may have additional benefits on 

blood glucose management due to the production of other 

hormones secondary to incretin action [46]. AR231453 was 

unable to improve insulin secretion directly in perfused islets 

in both in vivo and in vitro studies. Instead, in wild-type and 

β-cells inactivated mice, it improves glucose tolerance, GLP1, 

and insulin secretions [47]. The exceedingly low risk of 

hypoglycemia with GPR119 agonists is one of their benefits 

[48]. 

Activation of MT1/MT2 Receptors (Melatonin Receptors) 

Melatonin is well known for its involvement in the control of 

the circadian rhythm. Melatonin receptors, MT1 and MT2, are 

present in human tissues in two isoforms [49]. Melatonin 

receptors have been connected to glucose homeostasis and 

insulin release in recent investigations [50]. In hepatocytes 

and pancreatic cells, both MT1 and MT2 are expressed. The 

glucose metabolism is controlled by these receptor-linked 

pathways [51]. Melatonin binding to these melatonin 

receptors has been shown in numerous investigations to 

improve both local and systemic insulin sensitivity and reduce 

gluconeogenesis [52]. Even though melatonin and its agonists 

have insulin-sensitizing activity, the coupling to Gi protein 

lowers insulin release and leads to hyperglycemia [53]. 

Melatonin is thought to protect β-cells from functional 

overstrain by slowing insulin output [54]. Despite the lack of 

clinical support for risk of tolerance, a few long-lasting high-

affinity MT1/MT2 receptor agonists such as Tasimelteon 

(Hetlioz®), Ramelteon (Rozerem®), Piromelatine (Neu-

P11), and IIK7 have been produced, unlike over-the-counter 

melatonin. Ramelteon was found to be ineffective at lowering 

HbA1c levels in recent research [56]. The innovative 

medicine Piromelatine, on the other hand, has a longer half-

life than melatonin. It has outstanding anti-diabetic benefits 

through a variety of mechanisms, including reduction of 11-

hydroxysteroid dehydrogenase 1 (11-HSD1) and enhanced 

GLUT4 expression [57]. Tasimelteon is safe for individuals 

with non-24-hour sleep-wake disorder and insomnia, 

according to six clinical investigations [58]. 

Free Fatty Acid Receptors (FFAR) 

FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), and 

FFAR4 (GPR120), GPR42, and GPR84 were identified as 

FFARs. Only the first four FFARs have been widely 

researched as potential targets for anti-diabetic drugs. Long-

chain free fatty acids (FFA) activate FFAR1 and FFAR4, 

while short-chain FFAs activate FFAR2 and FFAR3. 

Medium-chain FFAs, on the other hand, activate GPR84 [59]. 

Currently, antidiabetic effects can be found in a variety of 

agonists and antagonists that interact with distinct FFARs. 

The developed FFAR-targeting medicines are still in the early 

development stages, ranging from preclinical to phase 2 [60]. 

FFAR1 and FFAR4 agonists have been shown to increase 

insulin and incretin productions [61]. 

Activation of Glucokinase (GKAs) 

Glucokinase activators are substances that stimulate the 

production of the enzyme glucokinase. Glucokinase (GK) is 

a phosphorylation-activated enzyme that catalyzes the rate-

limiting step in the conversion of glucose to glucose-6-

phosphate in numerous organs [62]. Because glucose is used 

in glycolysis and glycogenesis, glucose levels will fall. GK 

activators (GKAs) are small molecules that attach to GK 
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allosterically and increase enzyme activity directly. They can 

also do so by causing the glucokinase regulatory protein 

(GKRP) complex to become unstable [63]. One of these 

molecules was discovered in a series of 2,5,6-trisubstituted 

indole compounds with great potency and the ability to reduce 

blood glucose levels in mice with a very low dosage [64]. The 

majority of GKAs have been shown to raise hepatic 

triglycerides, resulting in hepatic steatosis [65]. Pfizer 

completed phase 2 trials of one of its pipelines, PF-04991532, 

which revealed that it increases plasma triglyceride levels 

rather than hepatic triglyceride levels. Studies have shown 

that PF-04937319 can be used in conjunction with metformin 

to increase safety and tolerability, particularly when 

employing a split-dose strategy [66]. 

Inhibition of the Sodium-Glucose Cotransporter 2              

(SGLT-2) 

The main distinction between sodium-glucose cotransporter 1 

(SGLT1) and sodium-glucose cotransporter 2 (SGLT2) is that 

the former transports both glucose and galactose in the small 

intestinal lumen, whilst the latter solely transports glucose in 

the kidney [67]. It's a cotransporter with a sodium-

transporting N-terminus and a monosaccharide-transporting 

C-terminus. In the kidney, SGLT2 reabsorbs up to 90% of the 

filtered glucose [68]. As a result, SGLT2 inhibitors are 

classified as glycosuric medications because they can lower 

blood glucose levels by increasing glucose excretion in urine. 

SGLT2 inhibitors appeared to be a strong glucose-lowering 

medication whether administered alone or in combination 

with other treatments like insulin [69]. In comparison to 

monotherapy, the therapeutic benefits of SGLT2 inhibitors 

and GLP1 agonists are highly favorable in a variety of 

measures such as body weight, cardiovascular risk, glycemic 

management, and blood pressure [70]. There have been 

numerous reports of SGLT2 inhibitor-related adverse effects. 

Hypoglycemia, hypovolemia, genital mycotic infections, 

genital tract infections, and euglycemic ketoacidosis are just 

a few of the conditions [71]. 

Inhibition of the 11-Hydroxysteroid Dehydrogenase-1         

(11-HSD1) 

11-hydroxysteroid dehydrogenase 1 (11-HSD1) is an 

NADPH-dependent reductase that transforms inert cortisone 

to its active form cortisol in the endoplasmic reticulum [72]. 

Cushing's syndrome is linked to high levels of glucocorticoids 

like cortisol. Based on observations from 11-HSD1-

transgenic mice and 11-HSD1 knockout mice, subsequent 

research concluded that 11-HSD1 contributes to the 

pathogenesis of T2DM [73]. As a result, 11-HSD1 inhibition 

has been proposed as a therapeutic target. INCB13739, an 11-

HSD1 inhibitor developed by Incyte Corporation, has 

completed phase 2 testing for safety and efficacy when taken 

in conjunction with metformin [74]. 

Imeglimin as Insulin sensitizer 

Imeglimin is a novel tetrahydro triazine-containing family of 

chemicals created by Poxel for the treatment of T2DM that 

just completed a Phase 2 trial in Japan with promising 

findings [75]. Its therapeutic potential stems from its ability 

to sensitize insulin-resistant tissues like muscle and the liver. 

It also boosts insulin secretion and decreases apoptosis in β-

cells [76]. It has been studied as a supplement to metformin 

and sitagliptin, with the findings indicating that Imeglimin is 

likely to have complementary effects with other medications 

[77]. Its efficacy is comparable to metformin, and it has a 

favorable safety profile [78]. Imeglimin appears to be a 

promising antidiabetic treatment based on the results of 

animal trials and human investigations, regardless of whether 

it is used as a monotherapy or in combination with other drugs 

[79]. 

Conclusions 

The development of new targets for pharmacological therapy 

in T2DM is critical to give clinicians a variety of alternatives. 

Treatment could be more effective, safe, and cost-efficient 

than present options. 
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