Effects of Different Types of Bile Salts on the Physical Properties of Ropinirole-Loaded

Authors

DOI:

https://doi.org/10.54133/ajms.v5i.176

Keywords:

Bilosomes, Ropinirole, Reverse-phase evaporation method, Sodium taurocholate, Sodium glycocholate

Abstract

Background: Bilosomes are vesicular nanocarriers that contain bile salts, making them more flexible and resistant to degradation in the gastrointestinal tract. Objective: To evaluate the effect of two bile salts on the physical properties and stability of the ropinirole-loading bilosome. Methods: Sixteen bilosomal formulations were prepared by a reverse-phase evaporation method. Each formula includes a mixture of non-ionic surfactants (Span®60 and Tween®60), along with cholesterol and bile salts (either sodium taurocholate (STC) or sodium glycocholate (SGC). The characteristics of the bilosomal formulations (drug content, entrapment efficiency, vesicle size, polydispersity index, zeta potential, in-vitro drug release, and Fourier transform infrared spectroscopy) were evaluated. Results: The entrapment efficiency of ropinirole was reduced by using sodium glycocholate instead of sodium taurocholate. The vesicle size and zeta potential were also affected by the type of bile salt and its amount. Drug release profiles were sustained, indicating a good entrapment of ropinirole. The STC-containing bilosomes are more stable than the SGC-containing bilosomes. Bilosomal formula F5 showed the highest entrapment efficiency (64.82%), suitable vesicle size (179.8 nm), zeta potential (-9.162 mV), polydispersity index (0.5116), and in vitro drug release (62.33%) after 24 hr. Conclusion: Sodium taurocholate was more suitable for the preparation of ropinirole-loading bilosomes, with more stability of bilosomes in bile salt solution.

Downloads

Download data is not yet available.

References

Sweetman SC. Martindale: the complete drug reference. 36thed. London: Pharmaceutical press; 2009. Monographs on drugs and ancillary substances. p.816.

Zesiewicz TA, Chriscoe S, Jimenez T, Upward J, VanMeter S. A fixed-dose,dose–response study of ropinirole prolonged release in early-stage Parkinson's disease. Neurodegener Dis Manag. 2017;7:49-59. doi: 10.2217/nmt-2016-0039. DOI: https://doi.org/10.2217/nmt-2016-0039

Sadashivaiah R, Babu BKS. Role of sodium l-cysteine alginate conjugate and isopropyl myristate to enhance the permeation enhancing activity of BCS class III drug from TDDS; optimization by central composite design and in vivo pharmacokinetics study. Drug Dev Ind Pharm. 2020;46(9):1427-1442. doi: 10.1080/03639045.2020.1791167. DOI: https://doi.org/10.1080/03639045.2020.1791167

Pardeshi CV, Belgamwar VS. Ropinirole-dextran sulfate nano plex for nasal administration against Parkinson's disease: in silico molecular modeling and in vitro-ex vivo evaluation. Artif Cells Nanomed Biotechnol. 2017;45(3):635-648. doi: 10.3109/21691401.2016.1167703. DOI: https://doi.org/10.3109/21691401.2016.1167703

Dudhipala N, Gorre T. Neuroprotective effect of ropinirole lipid nanoparticles enriched hydrogel for parkinson's disease: in vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. 2020;1-24. doi: 10.3390/pharmaceutics12050448. DOI: https://doi.org/10.3390/pharmaceutics12050448

Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. Fabrication of novel ultra-deformable bilosomes for enhanced ocular delivery of terconazole: in vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm. 2016;513:688-696. doi: 10.1016/j.ijpharm.2016.10.006. DOI: https://doi.org/10.1016/j.ijpharm.2016.10.006

Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target. 2013;21(3):291-299. doi: 10.3109/1061186X.2012.747528. DOI: https://doi.org/10.3109/1061186X.2012.747528

Nemr AA, El-Mahrouk GM, Badie HA. Hyaluronic acid-enriched bilosomes: an approach to enhance ocular delivery of agomelatine via D-optimal design: formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits. Drug Deliv. 2022;29(1):2343-2356. doi: 10.1080/10717544.2022.2100513. DOI: https://doi.org/10.1080/10717544.2022.2100513

Ahmad J, Singhal M, Amin S, Rizwanullah M, Akhter S, Kamal MA, et al. Bile salt stabilized vesicles (Bilosomes): A novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr Pharm. 2017;23:1575-1588. doi: 10.2174/1381612823666170124111142. DOI: https://doi.org/10.2174/1381612823666170124111142

Gupta DK, Abdul Ahad, Ayesha Waheed MA, Al-Jenoobi FI, Al-Mohizea AM. Bilosomes: a novel platform for drug delivery. In: Nayak AK, (Ed.), Systems of Nanovesicular Drug Delivery, (1st ed.), Academic Press; 2022. p. 293–309. doi: doi: 10.1016/B978-0-323-91864-0.00004-8. DOI: https://doi.org/10.1016/B978-0-323-91864-0.00004-8

Smail SS, Ghareeb MM, Omer HK, Al-Kinani KK, Alany RG. Studies on surfactants, cosurfactants, and oils for prospective use in formulation of ketorolac tromethamine ophthalmic nanoemulsions. Pharmaceutics. 202;13:467. doi: 10.3390/pharmaceutics13040467. DOI: https://doi.org/10.3390/pharmaceutics13040467

Elnaggar YSR, Omran S, Hazzah HA, Abdallah OY. Anionic versus cationic bilosomes as oral nanocarriers for enhanced delivery of the hydrophilic drug risedronate. Int J Pharm. 2019;10(564):410-425. doi: 10.1016/j.ijpharm.2019.04.069. DOI: https://doi.org/10.1016/j.ijpharm.2019.04.069

Singh G, Dwivedi H, Saraf SK, Saraf SA. Niosomal delivery of isoniazid- development and characterization. Singh al Trop J Pharm Res. 2011;10(2):203-210. doi: 10.4314/tjpr.v10i2.66564. DOI: https://doi.org/10.4314/tjpr.v10i2.66564

Zaid Alkilani A, Abu-Zour H, Alshishani A, Abu-Huwaij R, Basheer HA, Abo-Zour H. Formulation and evaluation of niosomal alendronate sodium encapsulated in polymeric microneedles: In vitro studies, stability study and cytotoxicity study. Nanomaterials (Basel). 2022;12(20):3570. doi: 10.3390/nano12203570. DOI: https://doi.org/10.3390/nano12203570

Mendula S, Knv R. Method development and validation of ropinirole by using uv method development and validation of ropinirole by using UV spectroscopy method. World J Pharm Pharm Sci. 2022;11(8):1418-1427. doi: 10.20959/wjpps20228-22808.

AlKhalidi MM, Jawad FJ. Enhancement of aqueous solubility and dissolution rate of etoricoxib by solid dispersion technique. Iraqi J Pharm Sci. 2020;29(1):76-87. doi: 10.31351/vol29iss1pp76-87. DOI: https://doi.org/10.31351/vol29iss1pp76-87

Janga KY, Tatke A, Balguri SP, Lamichanne SP, Ibrahim MM, Maria DN, et al. Ion-sensitive in situ hydrogels of natamycin bilosomes for enhanced and prolonged ocular pharmacotherapy: in vitro permeability, cytotoxicity and in vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1039-1050. doi: 10.1080/21691401.2018.1443117. DOI: https://doi.org/10.1080/21691401.2018.1443117

Taher SS, Al-Kinani KK, Hammoudi ZM, Ghareeb MM. Co-surfactant effect of polyethylene glycol 400 on microemulsion using BCS class II model drug. J Adv Pharm Educ Res. 2022;12(1):63-9. doi: 10.51847/1h17TZqgyI. DOI: https://doi.org/10.51847/1h17TZqgyI

Ahmed S, Kassem MA, Sayed S. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: Construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int J Nanomed. 2020;15:9783-9798. doi: 10.2147/IJN.S278688. DOI: https://doi.org/10.2147/IJN.S278688

Dawood NM, Abdal-Hamid SN. Formulation and characterization of lafutidine nanosuspension for oral drug delivery system. Int J App Pharm. 2018;10(Suppl 2):20-30. doi: 10.22159/ijap.2018v10i2.23075. DOI: https://doi.org/10.22159/ijap.2018v10i2.23075

Zafar A, Alruwaili NK, Sarim S, Hadal N, Saad K, Afzal M, et al. Bioactive apigenin loaded oral nano bilosomes: Formulation optimization to preclinical assessment. Saudi Pharm J. 2021;29(3):269-279. doi: 10.1016/j.jsps.2021.02.003. DOI: https://doi.org/10.1016/j.jsps.2021.02.003

Lobo MS, Costa P. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123-133. doi: 10.1016/s0928-0987(01)00095-1. DOI: https://doi.org/10.1016/S0928-0987(01)00095-1

Jihad HM, Akkam EJA. Formulation and in-vitro evaluation of carvedilol gastroretentive capsule as (Superporous Hydrogel). Iraqi J Pharm Sci. 2021;30(2):196-207. doi: 10.31351/vol30iss2pp196-207. DOI: https://doi.org/10.31351/vol30iss2pp196-207

Sezgin-Bayindir Z, Onay-Besikci A, Vural N, Yuksel N. Niosomes encapsulating paclitaxel for oral bioavailability enhancement: preparation, characterization, pharmacokinetics and biodistribution. J Microencapsul. 2013;30:796-804. doi: 10.3109/02652048.2013.788088. DOI: https://doi.org/10.3109/02652048.2013.788088

Alabdly AA, Kassab HJ. Formulation variables effect on gelation temperature of nefopam hydrochloride intranasal in situ gel. Iraqi J Pharm Sci. 2022;13(1):32-44. doi: 10.31351/vol31issSuppl.pp32-44. DOI: https://doi.org/10.31351/vol31issSuppl.pp32-44

Al-Hassani HR, Al-Khedairy EB. Formulation and in-vitro evaluation of meloxicam solid dispersion using natural polymers. Iraqi J Pharm Sci. 2021;30(1):169-178. doi: 10.31351/vol30iss1pp169-178. DOI: https://doi.org/10.31351/vol30iss1pp169-178

Mansouri M, Khayam N, Jamshidifar E, Pourseif T. Streptomycin sulfate-loaded niosomes enables increased antimicrobial and anti-bio film activities. Front Bioeng Biotechnol. 2021;9(10):1-11. doi: 10.3389/fbioe.2021.745099. DOI: https://doi.org/10.3389/fbioe.2021.745099

Saifi Z, Mir SR, Amin S. Bilosomes nanocarriers for improved oral bioavailability of acyclovir: A complete characterization through in vitro, ex-vivo and in vivo assessment. J Drug Deliv Sci Technol. 2020;57:101634. doi: 10.1016/j.jddst.2020.101634. DOI: https://doi.org/10.1016/j.jddst.2020.101634

Elkomy MH, Eid HM, Elmowafy M, Shalaby K, Zafar A, Abdelgawad MA, et al. Bilosomes as a promising nano platform for oral delivery of an alkaloid nutraceutical: improved pharmacokinetic profile and snowballed hypoglycemic effect in diabetic rats. Drug Deliv. 2022;29(1):2694-2704. doi: 10.1080/10717544.2022.2110997. DOI: https://doi.org/10.1080/10717544.2022.2110997

Salem HF, Nafady MM, Ali AA, Khalil NM, Elsisi AA. Evaluation of metformin hydrochloride tailoring bilosomes as an effective transdermal nanocarrier. Int J Nanomed. 2022;17(3):1185-201. doi: 10.2147/IJN.S345505. DOI: https://doi.org/10.2147/IJN.S345505

Mahmoud TM, Nafady MM, Farouk HO, Mahmoud DM, Ahmed YM, Zaki RM, et al. Novel bile salt stabilized vesicles-mediated effective topical delivery of diclofenac sodium: A new therapeutic approach for pain and inflammation. Pharmaceuticals. 2022;15(1106):1-28. doi: 10.3390/ph15091106. DOI: https://doi.org/10.3390/ph15091106

Obinu A, Porcu EP, Piras S, Ibba R, Carta A, Molicotti P, et al. Solid lipid nanoparticles as formulative strategy to increase oral permeation of a molecule active in multidrug-resistant tuberculosis management. Pharmaceutics. 2020;12(12):1-24. doi: 10.3390/pharmaceutics12121132. DOI: https://doi.org/10.3390/pharmaceutics12121132

Aburahma MH. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv. 2016;23(6):1847-1867. doi: 10.3109/10717544.2014.976892. DOI: https://doi.org/10.3109/10717544.2014.976892

el Menshawe SF, Aboud HM, Elkomy MH, Kharshoum RM, Abdeltwab AM. A novel nano gel loaded with chitosan decorated bilosomes for transdermal delivery of terbutaline sulfate: artificial neural network optimization, in vitro characterization and in vivo evaluation. Drug Deliv Transl Res. 2020;10(2):471-485. doi: 10.1007/s13346-019-00688-1. DOI: https://doi.org/10.1007/s13346-019-00688-1

El Taweel MM, Aboul-einien MH, Kassem MA, Elkasabgy NA. Intranasal zolmitriptan-loaded bilosomes with extended nasal mucociliary transit time for direct nose to brain delivery. Pharmaceutics. 2021;13:1-28. doi: 10.3390/pharmaceutics13111828. DOI: https://doi.org/10.3390/pharmaceutics13111828

Mohsen AM, Salama A, Kassem AA. Development of acetazolamide loaded bilosomes for improved ocular delivery: preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol. 2020;59:1-12. doi: 10.1016/j.jddst.2020.101910. DOI: https://doi.org/10.1016/j.jddst.2020.101910

Ismail A, Teiama M, Magdy B, Sakran W. Development of a novel bilosomal system for improved oral bioavailability of sertraline hydrochloride: Formulation design, in vitro characterization, and ex vivo and in vivo studies. AAPS PharmSciTech. 2022;23(6):188. doi: 10.1208/s12249-022-02339-0. DOI: https://doi.org/10.1208/s12249-022-02339-0

Aziz DE, Abdelbary AA, Elassasy AI. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: in vitro characterization, ex vivo permeation and in vivo skin deposition study. J Liposome Res. 2019;29(1):73–85. oi: 10.1080/08982104.2018.1430831. DOI: https://doi.org/10.1080/08982104.2018.1430831

Łozińska N, Jungnickel C. Importance of conjugation of the bile salt on the mechanism of lipolysis. Molecules. 2021;26(19):5764. doi: 10.3390/molecules26195764. DOI: https://doi.org/10.3390/molecules26195764

Sezgin-Bayindir Z, Antep MN, Yuksel N. Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water-soluble drug. AAPS PharmSciTech. 2015;16(1):108-117. doi: 10.1208/s12249-014-0213-9. DOI: https://doi.org/10.1208/s12249-014-0213-9

Silverstein RM, Bassler GC, Morrill TC. Spectrometric identification of organic compounds, (7rd ed.), John Wiley & Sons: New York, 2017.72-172 p. doi: 10.1016/0022-2860(76)87024-X. DOI: https://doi.org/10.1016/0022-2860(76)87024-X

Kar K, Pal RN, Bala NN. Preparation, characterization, and evaluation of ropinirole hydrochloride loaded controlled release microspheres using solvent evaporation technique. Int J Pharm Pharm Sci. 2018;10(6):57-67. doi: 10.22159/ijpps.2018v10i6.26070. DOI: https://doi.org/10.22159/ijpps.2018v10i6.26070

Kadhim ZM, Mahmood HS, Alaayedi M, Ghareeb MM. Formulation of flurbiprofe as microsponge drug delivery system. Int J Pharm Res. 2020;12(3):748-753. doi: 10.31838/ijpr/2020.12.03.141. DOI: https://doi.org/10.31838/ijpr/2020.12.03.141

Downloads

Published

2023-08-11

How to Cite

Ali, S. K., & Al-Akkam, E. J. (2023). Effects of Different Types of Bile Salts on the Physical Properties of Ropinirole-Loaded . Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 5, 134–142. https://doi.org/10.54133/ajms.v5i.176

Issue

Section

Original article

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.